

Yeast Cell Counting, Viability, and Vitality

Eric Jorgenson QA/QC Manager - Highland Brewing Co.

Introduction

- Why is this measurement important?
- Impact of yeast health/pitch rate on fermentation
 - Tank dwell time
 - Fermentation speed
 - Fermentation consistency
 - Under-attenuation
 - Out-of-spec ABV
 - Slow or stalled diacetyl/acetolactate metabolism

Introduction

- Yeast health impact on flavor profile
 - Off-flavor control
 - Too high cell count
 - Ethyl butyrate, ethyl hexanoate
 - Too low cell count
 - Isoamyl acetate, acetaldehyde, diacetyl
 - Too long fermentation time
 - Autolysis, ethanethiol/mercaptan

Introduction

- What are characteristics of healthy yeast?
 - Capable of cellular proliferation
 - Capable of cellular growth
 - Strong resting metabolism
 - Strong membrane integrity
- What we're going to cover
 - Cell count, viability, and vitality via hemocytomter and microscope
 - Citrate methylene blue
 - Alkaline methylene violet

Definitions

<u>Cell count</u>

- Concentration of yeast cells in a volume of liquid
- Typically expressed in x10⁶ (million cells per mL)
- <u>Viability</u>
 - % yeast cells that are capable of reproduction
 - ultimately determined by colony culture
 - Viability can be correlated with cell stain tests
- <u>Vitality</u>
 - A measure of the health or vigor of living cells
 - ultimately determined by fermentation performance
 - Vitality can be correlated with cell stain tests

How to measure cell count []

- Dye is not necessary
- Cell count = concentration
 - Count of cells in a set volume
- *An accurate cell count is all about sample prep*
 Inconsistent results are rarely due to counting errors
- Hemocytometer
- Dilution calculations must match procedure
- ASBC Method of Analysis "Yeast-4"

How to measure cell count [• • • •]

- All about sample prep!
- Degas the sample; bubbles displace volume
- Yeast settles very quickly, especially in a dilution

 Homogenize it well at every step of the process
- Flocculent yeast clumps should be separated
 - Common deflocculents:
 - 0.5M EDTA
 - 0.5% sulfuric acid
 - NaOH or HCI also works
 - *depending on your dye, this may alter its function slightly*

- Hemocytometer
 - Set volume per square
 - Measures concentration

- Loading the Hemocytometer
 - Take up a small volume in a fine-tipped pipette
 - Dry the outside of the tip
 - Expel a few drops before loading your sample
 - Capillary action will draw the sample into the grid

How to measure cell count [• • • •]

- ASBC Yeast-4 describes two counting methods
 - You may count all cells on one entire side
 - 25 counting areas
 - You may count all cells in 10 counting areas
 - 5 counting areas on both sides and average the result
 - We will cover in-depth this second method referenced here, since it is faster

How to measure cell count [• • • •] Small square = 1/400 sq. mm. 1/25 sq. mm. Counting grid (central area)

- Budding cells:
 - Count if >50% parent's size
- Cells touching the outer lines:
 - Only count on 2 perpendicular sides

How to measure cell count [• • •] Small square = 1/400 sq. mm. 1/25 sq. mm. Counting grid (central area)

- Budding cells:
 - Count if >50% parent's size
- Cells touching the outer lines:
 - Only count on 2 perpendicular sides

How to measure cell count []

- Dilution calculations must match procedure
 - Keep careful track of your dilution
 - Dilution factor is a ratio of total volume to sample volume
 - (10mL total volume):(1mL sample volume) = (10:1) = dilution factor of <u>10</u>
 - 10mL total volume = 1mL sample volume + 9mL diluent
 - Count 5 squares on both sides of the hemocytometer
 - Most hemocytometers give results in x10⁴ but yours may vary
 - Need to move the decimal over 2 spaces to get x10⁶

How to measure cell count []

- Dilution calculations must match procedure
 - Keep careful track of your dilution
 - Dilution factor is a ratio of total volume to sample volume
 - (10mL total volume):(1mL sample volume) = (10:1) = dilution factor of <u>10</u>
 - 10mL total volume = 1mL sample volume + 9mL diluent
 - Count 5 squares on both sides of the hemocytometer
 - Most hemocytometers give results in x10⁴
 - Need to move the decimal over 2 spaces to get x10⁶

How to measure viability •

- Viability is ultimately determined by <u>cell culture</u>
- Cell culture is correlated with a dye exclusion assay
 - Based on membrane potential
 - ASBC Method of Analysis "Yeast-3"

Weak membrane (non-viable)

How to measure viability •

- Industry standard viability dye: methylene blue
 - Intact membranes slow the uptake of methylene blue
 - Methylene blue is reduced in the cytoplasm
 - Cells w. weak membranes uptake dye too fast to reduce
 - Strong correlation w/ high range viability (90%-100%)
 - Tends to over-estimate viability below 90%
 - At 75% and below, results are too inaccurate to be relied on
 - Viable cells remain clear
 - Non-viable cells stain blue
 - Mix your sample 1:1 with 0.1% dye
 - Count at least 100 cells total and note how many of those were stained blue

- Solitary, darkly-stained cells are non-viable
- Budding cells:
 - Count budding cells as viable
- Lightly stained cells:
 - Count lightly stained cells as viable

How to measure vitality

- Vitality is ultimately determined by <u>fermentation</u>
 <u>performance</u>
- Yeast health is correlated with a <u>metabolic dye reduction</u>
 <u>assay</u>
 - Based on intracellular reducing power

How to measure vitality

- Good vitality dye: alkaline methylene violet
 - Alkalinity lowers membrane potential, letting more dye into cells with stressed membranes (helps mitigate false positive viability)
 - Only strong metabolisms will reduce the dye
 - Vital cells remain clear
 - Non-vital cells stain violet
 - Mix your sample 1:1 with 0.1% dye
 - Count at least 100 cells total and note how many of those are stained violet

How to measure vitality

- Solitary, darkly-stained cells are non-vital
- Budding cells:
 - Count budding cells as vital
- Lightly stained cells:
 - Count lightly stained cells as vital

Pro's and Con's

Pro's

- Quick and effective in high viability/vitality situations
- Easy to set a go/no-go threshold
 - Ex: Find alternate yeast source <85% viability

Con's

- No good way to quickly and accurately measure all aspects of yeast health, these tests are no exception
- Color gradient "gray areas" can leave a lot to individual's judgement

References

- Boulton, C. & Quain, D. Brewing yeast and fermentation. Blackwell Science Ltd. Oxford, UK. 2001.
- Smart, K.A., Chambers, K.M., Lambert, I. & Jenkins, C. (1999) Use of methylene violet staining procedures to determine yeast viability and vitality. Journal of the American Society of Brewing Chemists, 57, 18-23.
- Priest, F. & Campbell, I. Brewing Microbiology, 3rd ed. International Center for Brewing and Distilling, Heriot-Watt University. Kulwer Academic/Plenum publishers, New York, NY 2003.

Thank you for your kind attention!

• Questions?

